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Abstract

The response 4-tensor is derived for a spin-independent, relativistic magnetized
quantum electron gas. The sum over spins is carried out both directly and using
a procedure due to Ritus. The 4-tensor components are written in terms of a sum
over the two solutions of the resonance condition for the particle 4-momentum.
It is shown that the dispersive properties may be described in terms of a single
plasma dispersion function, for arbitrary occupation numbers for electrons and
positrons in each Landau level. The plasma dispersion function is evaluated
explicitly in the completely degenerate and nondegenerate thermal limits. The
perpendicular wave number appears in the arguments of J -functions, which
are proportional to generalized Laguerre polynomials, but not in the plasma
dispersion function. The result generalizes a known form for the response
tensor for parallel propagation (in the completely degenerate case), when the
J -functions are either zero or unity, to arbitrary angles of propagation.

PACS numbers: 12.20.−m, 52.25.Mq, 52.25.Xz, 52.27.Ny

1. Introduction

From a formal point of view, the most general description of the response of a (collisionless)
electron gas is that based on relativistic quantum theory. General forms for the response
tensor derived using quantum electrodynamics (QED) have long been available in both the
unmagnetized case [1–6], cf also [7], and the magnetized case [8–16], cf also [4, 17, 18]. A
complicating feature of the magnetized case is the spin of the electron. In the unmagnetized
case, the use of the Feynman propagator allows one to write down the response 4-tensor,
denoted by �μν(k) with kμ being the wave 4-vector, for any unpolarized electron gas without
considering the spin explicitly. Specific results have long been available for the completely
degenerate limit [1, 2, 4, 5], and also for the nondegenerate limit [3], corresponding to a
Jüttner distribution. In contrast, the treatment of the spin is a seemingly unavoidable major
complication in the magnetized case. A specific calculation involves constructing the Dirac
wavefunction for a magnetized electron, evaluating the response tensor (by one of several
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possible methods) and then performing the sums over spins term by term. Explicit results
are available only for special cases, notably parallel [4, 10, 11, 13, 16, 18] and longitudinal
[14] propagation in a completely degenerate electron gas. There are applications for which it
is desirable to have a more general expression for the response tensor, notably in connection
with neutrino emission from the cores of compact magnetized stars [19], where only parallel
propagating waves in the completely degenerate limit have been considered, and to pulsar and
magnetar magnetospheres [20], where the use of classically derived response tensors precludes
discussion of intrinsically relativistic quantum effects.

Our objective in this paper is to derive the relativistic quantum expression of the response
tensor for an arbitrary magnetized electron gas, subject only to the restriction that the electron
occupation number at each Landau level, n, is independent of spin. We start from a known
general expression for the response tensor that involves explicit sums over electron and positron
states described by quantum numbers ε = ±1, for electrons and positrons, respectively, s = ±
describing the spin, and n; there is also a sum over an intermediate state described by ε′, s ′, n′

and an integral over the parallel momentum pz. The first step in the calculation is to perform
the sums over s, s ′, to derive each component of the tensor as a dispersion integral over pz

that involves the occupation number nε
n(pz). We perform the sums over s, s ′ in two different

ways. One way is to use specific spin-dependent expressions, written down in appendix A,
and perform the sums over s, s ′ explicitly. The other way is based on the Ritus method [21],
outlined in appendix B, in which the sum over spin states is effectively replaced by traces
over Dirac matrices, as in the unmagnetized case for unpolarized electrons. A complicating
feature arises from the eigenstates for a specific n involving simple-harmonic wavefunctions
with quantum number l = n− (s + 1)/2, requiring that one separates the state with n = l from
that with n − 1 = l. As a result, the traces include projection operators onto two subspaces;
the conventional rules for evaluating traces are generalized to incorporate these projections in
appendix B. Both methods are cumbersome; the Ritus method has the advantage that it leads
directly to a 4-tensor form for the response tensor.

A second step in the calculation involves rationalizing the resonant denominator and
summing over ε′. The resonant denominator is ω − εεn + ε′ε′

n′ , and rationalization

involves removing the square roots in the energies εn = (
m2 + p2

z + 2neB
)1/2

, ε′
n′ =(

m2 + p′2
z + 2n′eB

)1/2
, where we use natural units (h̄ = c = 1) with B being the magnetic

field. The rationalized denominator is a quadratic function of pz,∝ (pz − pz+)(pz − pz−)

say, allowing each dispersion integral to be written as a sum of integrals with denominators
pz−pz±. The response 4-tensor is reduced to a sum over ± of tensor components involving the
particle 4-momentum, p

μ
±, evaluated at the resonance; it also involves generalized Laguerre

polynomials, written as functions J n
n−n′(x), with x = k2

⊥/2eB, and the dispersion integrals.
The general result, although cumbersome, can be written in a relatively concise form. Major
simplification to the J -functions occurs for x � 1, which is the case for small angles of
propagation or for sufficiently strong magnetic fields.

A third step is to show how all dispersion integrals may be expressed in terms of a single
dispersion function, which depends only on nε

n(pz) and is independent of the perpendicular
wave number, k⊥. This leads to a new unifying result: one may write down the general
form of the response tensor in terms of this dispersion function and evaluate the dispersion
function separately. We note that the existing results for parallel propagation in the completely
degenerate limit already contain this dispersion function (a logarithmic function in this case)
for a completely degenerate distribution. Our generalization shows that the same dispersion
function applies without modification to the oblique case, k⊥ �= 0, so that the dispersive
properties discussed for parallel propagation [18] also apply for oblique propagation. For a
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(magnetized) Jüttner distribution, the dispersion function can be expressed in terms of a plasma
dispersion function introduced for a Jüttner distribution in the nonquantum, unmagnetized case
[7]. We also comment on the comparison of our results with some known results, including
the ultrarelativistic and nonrelativistic quantum limits.

In section 2, general results for the response tensor are written down for a spin-independent
electron gas. In section 3, the sum over intermediate states is reduced to a single sum over
the Landau quantum number of the virtual electron or positron. Specific plasma dispersion
functions are defined in section 4, where it is shown that a single plasma dispersion function
suffices for any given electron distribution. In sections 5 and 6, we compare our results
with some known results in the completely degenerate limit and the nondegenerate limit,
respectively. The results are discussed in section 7 and the conclusions are summarized in
section 8.

2. General forms for the response tensor

In this section, a general form for the response tensor is derived for a spin-independent electron
gas.

2.1. Derivation using the vertex formalism

A conventional momentum-space form of QED is not possible in the presence of a magnetic
field. An alternative is provided by a vertex formalism [15], in which the spatial dependence of
the wavefunctions associated with each vertex is represented in terms of a Fourier-transformed
vertex function. The vertex function depends on the choice of a spin operator, and the response
tensor for a spin-independent electron gas is found by choosing a spin operator, constructing
the vertex functions and summing the known form for the response tensor in the vertex
formalism over the spins. This gives

�μν(k) = −e3B

2π

∑
ε,n,ε′,n′

∫
dpz

2π

∫
dp′

z

2π
2πδ(ε′p′

z − εpz + kz)

×
1
2 (ε′ − ε) + εnε

n(pz) − ε′nε′
n′(p′

z)

ω − εεn + ε′ε′
n′ + i0

[Cn′n(ε
′p′

‖, εp‖)]μν

2ε′εε′
n′εn

, (1)

where εn denotes εn(pz) = (
m2+p2

z +p2
n

)1/2
, pn = (2neB)1/2 and ε′

n′ denotes εn′(p′
z), and with

p
μ

‖ = (εn, 0, 0, pz), p
′μ
‖ = (ε′

n′ , 0, 0, p′
z). The resonance condition is imposed by (the Landau

prescription) giving the frequency an infinitesimal positive imaginary part, ω → ω + i0,
in the denominator. The electron gas is described by the occupation numbers, nε

n(pz), for
electrons and positrons. In the absence of an electron gas, the response tensor (1) gives the
unregularized response of the magnetized vacuum: the vacuum response tensor is derived
from it by an appropriate regularization procedure.

The tensor in the integrand in (1) is defined by the sum

[Cn′n(ε
′p′

‖, εp‖)]μν

2ε′εε′
n′εn

=
∑
s,s ′

[
	ε′ε

q ′q(k)
]μ[

	ε′ε
q ′q(k)

]∗ν
, (2)

where
[
	ε′ε

q ′q(k)
]μ

is the vertex function, with the quantum numbers q denoting pz, n, s and
q ′ denoting p′

z, n
′, s ′. An explicit form for the vertex function is written down in appendix A

for the specific choice of the (z-component of the) magnetic moment as the spin operator.
The coordinate system is chosen such that the magnetic field is along the z-axis, with
k = (k⊥ cos ψ, k⊥ sin ψ, kz).
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For some purposes it is convenient to choose a set of basis 4-vectors that allows the
tensor (2), and hence the response tensor itself, to be written in terms of invariant components
with respect to these basis vectors. One such choice is made as follows. Using the Maxwell
tensor for the background magnetic field, Fμν = Bf μν , one may separate the metric tensor,
gμν = g

μν

‖ + g
μν

⊥ , into parts that span the 2D ‖-subspace defined by the time-B axes and the
orthogonal 2D ⊥-subspace, with g

μν

⊥ = −f μ
αf αν . On combining f μν and its dual, φμν , with

the wave 4-vector, kμ, one may construct a set of four orthogonal 4-vectors that span both
subspaces. Such a set is

k
μ

‖ = g
μν

‖ kν = (ω, 0, 0, kz), k
μ

⊥ = g
μν

⊥ kν = (0, k⊥ cos ψ, k⊥ sin ψ, 0),

(3)
k

μ

G = −f μνkν = (0,−k⊥ sin ψ, k⊥ cos ψ, 0), k
μ

D = φμνkν = (kz, 0, 0, ω).

The Onsager relations imply that there are only six independent components of the response
3-tensor (three diagonal and three off-diagonal). Similarly, for the response 4-tensor there are
only six independent components: in this case, the Onsager relations imply that there are only
ten independent components (four diagonal and six off-diagonal), and the charge-continuity
or gauge-invariance relations give four additional constraints, implying that the components
along kμ = k

μ

‖ + k
μ

⊥, or kν are identically zero.

2.2. Derivation using the Ritus method

An alternative way of deriving the response tensor is by using the Ritus method, in which the
sum over spins is performed implicitly, and the explicit evaluation involves traces over Dirac
matrices. Performing the relevant traces is more cumbersome than in the unmagnetized case;
relevant sums are summarized in appendix B. The results of both the Ritus method and the
direct sum (2) can be written in the form[
Cε′ε

n′n(P
′
‖, P‖)

]μν = {
P

′μ
‖ P ν

‖ + P
μ

‖ P ′ν
‖ − [

(P ′P)‖ − m2]gμν

‖
}[(

J n−1
n′−n

)2
+

(
J n

n′−n

)2]
− [

(P ′P)‖ − m2]{gμν

⊥
[(

J n−1
n′−n+1

)2
+

(
J n

n′−n−1

)2] − if μν
[(

J n−1
n′−n+1

)2

− (
J n

n′−n−1

)2]}
+ pn′pn

{
g

μν

‖ 2J n−1
n′−nJ

n
n′−n + (eμ

+ eν
+ + e

μ
−eν

−)J n−1
n′−n+1J

n
n′−n−1

}
−pnP

′μ
‖

[
J n−1

n′−nJ
n
n′−n−1e

ν
+ + J n

n′−nJ
n−1
n′−n+1e

ν
−
]

−pnP
′ν
‖

[
J n−1

n′−nJ
n
n′−n−1e

μ
− + J n

n′−nJ
n−1
n′−n+1e

μ
+

]
−pn′P

μ

‖
[
J n−1

n′−nJ
n−1
n′−n+1e

ν
− + J n

n′−nJ
n
n′−n−1e

ν
+

]
−pn′P ν

‖
[
J n−1

n′−nJ
n−1
n′−n+1e

μ
+ + J n

n′−nJ
n
n′−n−1e

μ
−
]
.

(4)

The 4-vectors introduced in (4) are defined by P
μ

‖ = (εεn, 0, 0, εpz), P
′μ
‖ =

(ε′ε′
n′ , 0, 0, ε′p′

z), e
μ
± = (k

μ

⊥ ± ikμ

G)/k⊥. The J -functions are defined by

J n
ν (x) = (−)νJ n+ν

−ν (x) =
(

n!

(n + ν)!

)1/2

e−x/2xν/2Lν
n(x), (5)

where Lν
n(x) is the generalized Laguerre polynomial (A.2). The argument x = k2

⊥/2eB of the
J -functions is omitted in (4).

The tensor (4) does not satisfy the charge-continuity and gauge-invariance relations; rather
it satisfies the identities

kμ

[
Cε′ε

n′n(P
′
‖, P‖)

]μν = (ω − εεn + ε′ε′
n′)

[
Cε′ε

n′n(P
′
‖, P‖)

]0ν
,

(6)

kν

[
Cε′ε

n′n(P
′
‖, P‖)

]μν = (ω − εεn + ε′ε′
n′)

[
Cε′ε

n′n(P
′
‖, P‖)

]μ0
.

4
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Relations (6) suffice to ensure that the response tensor itself satisfies the charge-continuity
and gauge-invariance relations: the factors in parentheses on the right-hand sides of (6) cancel
with the resonant denominators in (1), and the resulting expressions integrate to zero. To
establish that the form (4) satisfies (6), one needs the relations

pn′J n
n′−n(x) = pnJ

n−1
n′−n(x) + k⊥J n

n′−n−1(x),

pn′J n−1
n′−n(x) = pnJ

n
n′−n(x) + k⊥J n−1

n′−n+1(x). (7)

3. Sum over intermediate electron and positron states

In this section, the sum over the electron and positron contributions to the virtual intermediate
state is performed explicitly, and the result is written in terms of resonant values of pz.

3.1. Resonant values of pz

The denominator, ω − εεn + ε′ε′
n′ , in (1) can be rationalized to remove the square roots by

multiplying numerator and denominator by ω − εεn − ε′ε′
n′ , ω + εεn − ε′ε′

n′ , ω + εεn + ε′ε′
n′ .

The denominator becomes

D(ω, εn, ε
′
n′) = (ω − εεn + ε′ε′

n′)(ω + εεn − ε′ε′
n′)(ω − εεn − ε′ε′

n′)(ω + εεn + ε′ε′
n′)

= −4
(
ω2 − k2

z

)
(εpz − pz+)(εpz − pz−)

= −4
(
ω2 − k2

z

)
(ε′p′

z − p′
z+)(ε

′p′
z − p′

z−). (8)

The two alternative forms for (8) follow by noting that it can be written as a quadratic form in
either pz or p′

z and solved for the resonant values [12].
Explicit forms for the resonant momenta are

pz± = kzfnn′ ± ωgnn′ , p′
z± = kz(fnn′ − 1) ± ωgnn′ , (9)

which depend on n, n′ through

fnn′ =
(
ε0
n

)2 − (
ε0
n′
)2

+ ω2 − k2
z

2
(
ω2 − k2

z

) , (10)

g2
nn′ =

[
ω2 − k2

z − (
ε0
n − ε0

n′
)2][

ω2 − k2
z − (

ε0
n + ε0

n′
)2]

4
(
ω2 − k2

z

)2 , (11)

with ε0
n = (

m2 +p2
n

)1/2
, and where the identity (p2)‖ = (

ε0
n

)2
implies

(
ω2 −k2

z

)(
f 2

nn′ −g2
nn′

) =(
ε0
n

)2
. The resonant energies are

ε± = εn(pz±) = ωfnn′ ± kzgnn′ , ε′
± = εn′(p′

z±) = ω(fnn′ − 1) ± kzgnn′ . (12)

3.2. Sums over ε′, ε

The sum over ε′ in the pz-integral in (1), and the sum over ε in the p′
z-integral, can be performed

to give∑
ε′

ε′[Cn′n(P
′
‖, P‖)]μν

2ε′
n′εn(ω − εεn + ε′ε′

n′)
= [Cn′n(P‖ − k‖, P‖)]μν

2εn

[
ε(εnω − pzkz) − (

ω2 − k2
z

)
fnn′

] ,

∑
ε

ε[Cn′n(P
′
‖, P‖)]μν

2ε′
n′εn(ω − εεn + ε′ε′

n′)
= [Cn′n(P

′
‖, P

′
‖ + k‖)]μν

2ε′
n′
[
ε′(ε′

n′ω − p′
zkz) +

(
ω2 − k2

z

)
fn′n

] , (13)

5
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respectively. Expression (1) for the response tensor becomes

�μν(k) = −e3B

2π

∑
n,n′

[∑
ε

∫
dpz

2π
nε

n(pz)
[Cn′n(P‖ − k‖, P‖)]μν

2εn

[
ε(εnω − pzkz) − (

ω2 − k2
z

)
fnn′

]
−

∑
ε′

∫
dp′

z

2π
nε′

n′(p
′
z)

[Cn′n(P
′
‖, P

′
‖ + k‖)]μν

2ε′
n′
[
ε′(ε′

n′ω − p′
zkz) +

(
ω2 − k2

z

)
fn′n

]]
. (14)

To combine the two integrals in (14) into a single integral with the same resonant denominator,
one rewrites the p′

z-integral by making the changes p′
z ↔ pz, n

′ ↔ n, ε′ ↔ −ε. The resulting
expression is

�μν(k) = −e3B

2π

∑
ε,n,n′

∫
dpz

2π

ε(εnω + pzkz) +
(
ω2 − k2

z

)
fnn′

2εn

(
ω2 − k2

z

)
(εpz − pz+)(εpz − pz−)

×[
nε

n(pz)[Cn′n(P‖ − k‖, P‖)]μν + n−ε
n (pz)[Cnn′(−P‖,−P‖ + k‖)]μν

]
. (15)

3.3. Charge-symmetric and anti-symmetric parts

The occupation numbers in (15) may be written in terms of the sum and difference of the
electron and positron contributions: nε

n(pz) = 1
2

[
n̄n(pz) + εnd

n(pz)
]

with

n̄n(pz) = n+
n(pz) + n−

n (pz), nd
n(pz) = n+

n(pz) − n−
n (pz). (16)

The integrand then separates naturally into nongyrotropic and gyrotropic parts, which are
symmetric and anti-symmetric, respectively, under the interchange of electrons and positrons:

�μν(k) = −e3B

2π

∑
ε,n,n′

∫
dpz

2π

ε(εnω + pzkz) +
(
ω2 − k2

z

)
fnn′

2εn

(
ω2 − k2

z

)
(εpz − pz+)(εpz − pz−)

×[
n̄n(pz)[Nn′n(εp‖, k)]μν + εnd

n(pz)[Gn′n(εp‖, k)]μν
]
, (17)

where the argument εp‖ of N and G denotes the 4-vector P
μ

‖ = εp
μ

‖ . The nongyrotropic part
is given by

[Nn′n(εp‖, k)]μν = [ε(pk)‖ − 2neB]
{
g

μν

‖
[(

J n−1
n′−n

)2
+

(
J n

n′−n

)2]
+ g

μν

⊥
[(

J n−1
n′−n+1

)2

+
(
J n

n′−n−1

)2]}
+ [2p

μ

‖ pν
‖ − (εp

μ

‖ kν
‖ + εpν

‖k
μ

‖ )]
[(

J n−1
n′−n

)2
+

(
J n

n′−n

)2]
+ 2pn′pn

{
g

μν

‖ J n−1
n′−nJ

n
n′−n +

[
e
μ

1 eν
1 − e

μ

2 eν
2

]
J n−1

n′−n+1J
n
n′−n−1

}
+ pn

(
k

μ

‖ eν
1 + kν

‖e
μ

1

)[
J n−1

n′−nJ
n
n′−n−1 + J n

n′−nJ
n−1
n′−n+1

]
−pn

[
εp

μ

‖ eν
1 + εpν

‖e
μ

1

][
J n−1

n′−nJ
n
n′−n−1 + J n

n′−nJ
n−1
n′−n+1

]
−pn′

[
εp

μ

‖ eν
1 + εpν

‖e
μ

1

][
J n−1

n′−nJ
n−1
n′−n+1 + J n

n′−nJ
n
n′−n−1

]
, (18)

and the gyrotropic part is given by

[Gn′n(εp‖, k)]μν = i
{
f μν[2neB − ε(pk)‖]

[(
J n−1

n′−n+1

)2 − (
J n

n′−n−1

)2]
+ pn

(
k

μ

‖ eν
2 − kν

‖e
μ

2

)[
J n−1

n′−nJ
n
n′−n−1 − J n

n′−nJ
n−1
n′−n+1

]
−pn

[
εp

μ

‖ eν
2 − εpν

‖e
μ

2

][
J n−1

n′−nJ
n
n′−n−1 − J n

n′−nJ
n−1
n′−n+1

]
+ pn′

[
εp

μ

‖ eν
2 − εpν

‖e
μ

2

][
J n−1

n′−nJ
n−1
n′−n+1 − J n

n′−nJ
n
n′−n−1

]}
, (19)

with e
μ

1 = k
μ

⊥
/
k⊥, e

μ

2 = −f μνk⊥ν/k⊥ = k
μ

G

/
k⊥, k

μ

‖ = (ω, 0, 0, kz) and where the argument,
x = k2

⊥
/

2eB, of the J -function is omitted.
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4. Dispersion integrals

The integral over pz in expression (17) may be interpreted as a dispersion integral that depends
on the particular form for the occupation numbers nε

n(pz). We show that the dispersion integrals
can be expressed in terms of a single dispersion integral, which becomes a plasma dispersion
function for any given nε

n(pz).

4.1. Reduction of dispersion integrals

The integral over pz in (17) may first be expressed in terms of two dispersion integrals. After
writing the denominator in (17) using

1

(εpz − pz+)(εpz − pz−)
= 1

2ωgnn′

∑
±

±1

εpz − pz±
, (20)

the pz-integral may be evaluated in terms of the two integrals

I1±(ω, kz) =
∫

dpz

nn(pz)

εpz − pz±
, I2±(ω, kz) = ε0

n

∫
dpz

εn

nn(pz)

εpz − pz±
. (21)

The functions defined by (21) are written as Ii±(ω, kz) → Īi±(ω, kz), I
d
i±(ω, kz) for

nn(pz) → n̄n(pz), n
d
n(pz), respectively, with i = 1, 2. On inserting (18), (19) into (17),

the integrals required are⎛
⎜⎝

H(ω, kz)

Hμ(ω, kz)

Hμν(ω, kz)

⎞
⎟⎠ =

∫
dpz

nn(pz)

εn

ε(εnω + pzkz) +
(
ω2 − k2

z

)
fnn′

(εpz − pz+)(εpz − pz−)

⎛
⎜⎝

1

εp
μ

‖
p

μ

‖ pν
‖

⎞
⎟⎠ . (22)

One finds⎛
⎜⎝

H(ω, kz)

Hμ(ω, kz)

Hμν(ω, kz)

⎞
⎟⎠ =

∑
±

±K±(ω, kz)

⎛
⎜⎝

1

p
μ
±

p
μ
±pν

±

⎞
⎟⎠ +

∫
dpz

nn(pz)

εn

⎛
⎜⎝

0

k
μ

‖
πμν

⎞
⎟⎠ , (23)

where the dispersion is described in terms of the single combination of the integrals (21),

K±(ω, kz) = εε0
nI1± + ε±I2±

2gnn′ε0
n

, (24)

with p
μ
± = (ε±, 0, 0, pz±) and with

πμν = εp
μ

‖ kν
‖ + εpν

‖k
μ

‖ − ε(pk)‖g
μν

‖ +
(
k

μ

‖ kν
‖ + k

μ

Dkν
D

)
fnn′ (25)

in the nondispersive term. The result (23) with (24) is consistent with a known property of
dispersion integrals [22]: the numerator can be evaluated at resonance and taken outside the
integral. However, a detailed evaluation is needed to determine the nondispersive term.

The response 4-tensor (17) reduces to a form

�μν(k) = �
μν

ND(k) − e3B

8π2
(
ω2 − k2

z

) ∑
ε,n,n′,±

±{
[Nn′n(p±, k)]μνK̄±(ω, kz)

+ ε[Gn′n(p±, k)]μνKd
±(ω, kz)

}
, (26)

with �
μν

ND(k) being a nondispersive part, arising from the final integrals in (23). The
dispersion functions K̄±(ω, kz),K

d
±(ω, kz) correspond to (24) with nn(pz) → n̄n(pz), n

d
n(pz),

respectively, in (21); these functions depend implicitly on ε.
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4.2. Nondispersive part

The nondispersive part involves the response tensor (25) with contributions from electrons and
positrons in each Landau level. The integrals may be expressed in terms of the total proper
number density, n̄pr:

n̄pr =
∑
ε=±

∑
n=0

gnn
ε
npr, (27)

with the degeneracy factor g0 = 1 and gn = 2 for n � 1, and with

nε
npr = eBm

2π

∫
dpz

2π

nε
n(pz)

εn

. (28)

Using the sum rules, derived by Sokolov and Ternov [23],
∞∑

n′=0

J n′
n−n′(x)J n′

n′′−n′(x) = δnn′′ , (29)

∞∑
n′=0

(n′ − n)
[
J n′

n−n′(x)
]2 = x, (30)

one finds

�
μν

ND = −e2n̄pr

m

[
g

μν

⊥ −
(
k

μ

‖ kν
‖ + k

μ

Dkν
D

)
k2
⊥

[(k2)‖]2
− k

μ

‖ kν
⊥ + k

μ

⊥kν
‖

(k2)‖

]
, (31)

with (k2)‖ = ω2 − k2
z .

4.3. Dispersive part

The dispersive part of (26) is made up of two contributions, both summed over ±: a
nongyrotropic contribution [Nn′n(p±, k)]μν times K̄±(ω, kz) and a gyrotropic contribution
[Gn′n(p±, k)]μν times Kd

±(ω, kz). The nongyrotropic contribution is

[Nn′n(p±, k)]μν = {
g

μν

‖
[(

J n−1
n′−n

)2
+

(
J n

n′−n

)2]
+ g

μν

⊥
[(

J n−1
n′−n+1

)2

+
(
J n

n′−n−1

)2]}[
(p±k)‖ − 2neB

]
+ [2p

μ
±pν

± − (p
μ
±kν

‖ + pν
±k

μ

‖ )]
[(

J n−1
n′−n

)2
+

(
J n

n′−n

)2]
+ 2pn′pn

{
g

μν

‖ J n−1
n′−nJ

n
n′−n +

[
e
μ

1 eν
1 − e

μ

2 eν
2

]
J n−1

n′−n+1J
n
n′−n−1

}
+ pn

(
k

μ

‖ eν
1 + kν

‖e
μ

1

)[
J n−1

n′−nJ
n
n′−n−1 + J n

n′−nJ
n−1
n′−n+1

]
−pn

[
p

μ
±eν

1 + pν
±e

μ

1

][
J n−1

n′−nJ
n
n′−n−1 + J n

n′−nJ
n−1
n′−n+1

]
−pn′

[
p

μ
±eν

1 + pν
±e

μ

1

][
J n−1

n′−nJ
n−1
n′−n+1 + J n

n′−nJ
n
n′−n−1

]
, (32)

and the gyrotropic contribution is

[Gn′n(p±, k)]μν = i
{
f μν[2neB − (p±k)‖]

[(
J n−1

n′−n+1

)2 − (
J n

n′−n−1

)2]
+ pn

(
k

μ

‖ eν
2 − kν

‖e
μ

2

)[
J n−1

n′−nJ
n
n′−n−1 − J n

n′−nJ
n−1
n′−n+1

]
−pn

[
p

μ
±eν

2 − pν
±e

μ

2

][
J n−1

n′−nJ
n
n′−n−1 − J n

n′−nJ
n−1
n′−n+1

]
+ pn′

[
p

μ
±eν

2 − pν
±e

μ

2

][
J n−1

n′−nJ
n−1
n′−n+1 − J n

n′−nJ
n
n′−n−1

]}
. (33)
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4.4. Plasma dispersion function

An alternative way of writing the plasma dispersion function (24) involves changing the
variable of integration from pz to t, defined by writing

pz

ε0
n

= 2t

1 − t2
,

εn

ε0
n

= 1 + t2

1 − t2
,

pz±
ε0
n

= 2t±
1 − t2±

,
ε±
ε0
n

= 1 + t2
±

1 − t2±
. (34)

The resonances in the form εpz = pz± are reproduced by εt = t±,−1/t± with

t± = ε± − ε0
n

pz±
,

1

t±
= ε± + ε0

n

pz±
. (35)

One finds that the combination of functions in (24) can be expressed in the form

K±(ω, kz) = 1

gnn′

∫ 1

−1

dt t

1 − t2
nn(t) +

1

gnn′

[
1

2
(1 + ε)J (t±) +

1

2
(1 − ε)J (1/t±)

]
, (36)

where only a single plasma dispersion function,

J (t0) =
∫ 1

−1
dt

nn(t)

t − t0
, (37)

is required for either nn(t) = n̄n(t) or nd
n(t), where nn(t) denotes nn(pz) with pz expressed

in terms of t through (34). The terms in (36) proportional to 1
2 (1 ± ε) describe dispersion

associated with gyromagnetic absorption and pair creation, respectively.

5. Completely degenerate limit

For a completely degenerate distribution the dispersion function (37) becomes a logarithmic
function. In this section, we evaluate the response tensor in this case and show that it reproduces
the known particular case of parallel propagation.

5.1. Completely degenerate limit

In the completely degenerate limit, the occupation number at each Landau level is unity up
to the Fermi energy and zero above it. This corresponds to all the states being filled for
|pz| < pnF , with

pnF = (
ε2
F − m2 − 2neB

)1/2
. (38)

Only Landau levels n < nF are occupied, with n = nF being the maximum n for which pnF ,
defined by (38), is real. The occupation number for electrons at the nth level is n+

n(t) = 1, for
|t | < tF = pnF /(εF + ε0

n), and n+
n(t) = 0, for |t | > tF . The occupation number for positrons

is zero, so that we have n̄n(t) = nd
n(t) = n+

n(t). With the upper and lower limits of ±1 on the
integrals over t replaced by tF , the plasma dispersion function (37) becomes

J (t0) = ln

∣∣∣∣ tF − t0

tF + t0

∣∣∣∣ = ln

∣∣∣∣∣pnF − (
εF + ε0

n

)
t0

pnF +
(
εF + ε0

n

)
t0

∣∣∣∣∣ , (39)

with t0 identified as either t± or 1/t±. The resulting logarithmic factors may be rewritten using
the identities∣∣∣∣pz±εF − pnF ε±
pz±εF + pnF ε±

∣∣∣∣ =
∣∣∣∣ (tF − t±)(tF − 1/t±)

(tF + t±)(tF + 1/t±)

∣∣∣∣,
∣∣∣∣pz± − pnF

pz± + pnF

∣∣∣∣ =
∣∣∣∣ (tF − t±)(tF + 1/t±)

(tF + t±)(tF − 1/t±)

∣∣∣∣,
so that one has

J (t±) + J (1/t±) = ln

∣∣∣∣pz±εF − pnF ε±
pz±εF + pnF ε±

∣∣∣∣, J (t±) − J (1/t±) = ln

∣∣∣∣pz± − pnF

pz± + pnF

∣∣∣∣. (40)

9
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With the first term in (36) zero, after summing over ε, (26) gives

�μν(k) = �
μν

ND(k) − e3B

8π2
(
ω2 − k2

z

) ∑
n,n′,±

±1

gn′n

×
{

[Nn′n(p±, k)]μν ln

(
pz±εF − pnF ε±
pz±εF + pnF ε±

)
+ [Gn′n(p±, k)]μν ln

∣∣∣∣pz± − pnF

pz± + pnF

∣∣∣∣
}
,

(41)

with the nondispersion term given explicitly by

�
μν

ND(k) = −e3B

4π2

∑
n=0

gn ln

∣∣∣∣ εF + pnF

εF − pnF

∣∣∣∣
[
g

μν

⊥ −
(
k

μ

‖ kν
‖ + k

μ

Dkν
D

)
k2
⊥

[(k2)‖]2
− k

μ

‖ kν
⊥ + k

μ

⊥kν
‖

(k2)‖

]
, (42)

where the logarithmic factor is proportional to the proper number density in the nth Landau
level. The logarithmic functions in (41) are the same as in the case of parallel propagation
[18], confirming that no additional dispersive effects are included by the generalization to
oblique propagation.

Explicit evaluation of the non-gyrotropic and gyrotropic parts in (41) is facilitated by
choosing ψ = 0, so that [Gn′n(p±, k)]μν is non-zero for μ �= 2, ν = 2; μ = 2, ν �= 2 and
[Nn′n(p±, k)]μν is non-zero for the remaining μν values. Explicit forms are (μ = 0, 3 only in
the following)

[Nn′n(p±, k)]00 = [2ε2
± − ε±ω − pz±kz − 2neB]

[(
J n−1

n′−n

)2
+

(
J n

n′−n

)2]
+ 2pn′pnJ

n−1
n′−nJ

n
n′−n,

[Nn′n(p±, k)]11 = −[(p±k)‖ − 2neB]
[(

J n−1
n′−n+1

)2
+

(
J n

n′−n−1

)2]
+ 2pn′pnJ

n−1
n′−n+1J

n
n′−n−1,

[Nn′n(p±, k)]22 = −[(p±k)‖ − 2neB]
[(

J n−1
n′−n+1

)2
+

(
J n

n′−n−1

)2] − 2pn′pnJ
n−1
n′−n+1J

n
n′−n−1,

[Nn′n(p±, k)]33 = [
2p2

z± − ε±ω − pz±kz + 2neB
][(

J n−1
n′−n

)2
+

(
J n

n′−n

)2] − 2pn′pnJ
n−1
n′−nJ

n
n′−n,

[Nn′n(p±, k)]03 = [2ε±pz± − (ε±kz + pz±ω)]
[(

J n−1
n′−n

)2
+

(
J n

n′−n

)2]
,

[Nn′n(p±, k)]μ1 = pn(k
μ

‖ − p
μ
±)

[
J n−1

n′−nJ
n
n′−n−1 + J n

n′−nJ
n−1
n′−n+1

]
−pn′p

μ
±
[
J n−1

n′−nJ
n−1
n′−n+1 + J n

n′−nJ
n
n′−n−1

]
,

[Gn′n(p±, k)]μ2 = i
{
pn(k

μ

‖ − p
μ
±)

[
J n−1

n′−nJ
n
n′−n−1 − J n

n′−nJ
n−1
n′−n+1

]
+ pn′p

μ
±
[
J n−1

n′−nJ
n−1
n′−n+1 − J n

n′−nJ
n
n′−n−1

]}
,

[Gn′n(p±, k)]12 = −i
{
[2neB − (p±k)‖]

[(
J n−1

n′−n+1

)2 − (
J n

n′−n−1

)2]}
, (43)

with the remaining components determined by the Hermitian condition.

6. Nondegenerate limit

The plasma dispersion function (37) may be written down for any distribution, including an
arbitrary thermal distribution. In this section, after writing down a Fermi–Dirac distribution, we
compare our results with known plasma dispersion function (37) for nondegenerate distribution
functions.

6.1. Fermi–Dirac distribution

The most general form for a thermal electron distribution is a Fermi–Dirac (FD) distribution.
This corresponds to the occupation number

nε
n(pz) = 1

e(εn−με)/T + 1
, (44)

10
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where T is the temperature (in energy units) and με are the chemical potentials for the electrons
and positrons, respectively, with μ+ + μ− = 0. Although the plasma dispersion function can
be written down for the FD-distribution (44), we are aware of no results in the literature
with which we can compare the result. The completely degenerate limit, discussed above,
corresponds to T → 0 in the FD distribution (44), with the Fermi energy being equal to the
chemical potential. Here we consider the nondegenerate limit.

6.2. Jüttner distribution

In the nondegenerate limit, the chemical potential μ+ −m is large and negative. The unit term
in the denominator in the FD distribution (44) is then negligible, and the resulting distribution
reduces to a sum of one-dimensional Jüttner distributions,

nε
n(pz) = Aε

n exp

[
−ρ

(
1 +

p2
z

m2
+ 2n

B

Bc

)1/2
]

, ρ = m

T
, (45)

with Aε
n = exp(ρμε/m) related to the proper number density, nε

npr , in each Landau level by

gnn
ε
npr

Aε
n

= gn

eBm

2π2
K0

(
ρε0

n

/
m

)
, (46)

with g0 = 1, gn = 2 for n � 1 and where Kν are the modified Bessel functions [24].
For the Jüttner distribution (45), the plasma dispersion function (37) becomes

J ε
n (t0) = Aε

n

∫ 1

−1
dt

1

t − t0
exp

(
−ε0

n

T

1 + t2

1 − t2

)
. (47)

This function may be evaluated in terms of a relativistic plasma dispersion function T (v, ρ),
used in the unmagnetized case [25]. In the magnetized case, it is convenient to write

T (v0, ρn) =
∫ 1

−1

dv

v − v0
exp(−ρnγ ), (48)

with γ = (1 − v2)−1/2, ρn = ε0
n

/
T and v0 = 2t0

/(
1 + t2

0

)
. Using the properties of T (v, ρ) in

[25], one finds

J ε
n (t0) = Aε

n

2

[
−

(
1 − v2

0

)1/2

v0

(
2K1(ρn) +

(
1 − v2

0

)
ρn

T ′(v0, ρn)

)
+ T (v0, ρn)

]
, (49)

with T ′(v0, ρn) = ∂T (v0, ρn)/∂v0. The description of dispersion in a relativistic quantum
magnetized nondegenerate thermal electron gas is characterized by the four dispersion
functions given by (49) with t0 = t±, 1/t±. An explicit form for the response tensor is
closely analogous to (41): one replaces the logarithmic factors by the combinations implied
by (40) and (49). There is no known explicit results with which to compare this general result.

6.3. Ultrarelativistic quantum limit

The response tensor in the ultrarelativistic limit for a nondegenerate thermal distribution was
discussed by [26], who considered only the case where the particles are in their lowest Landau
orbital, n = 0. Following [26], we assume that the thermal distribution function has a low-
energy cutoff, (45), say at γ = γ ∗ � 1, so that all particles have γ = (1 + t2)/(1 − t2) � 1.
The ultrarelativistic assumption corresponds to 1 − |t | � 1. The allowed range of t is
t∗ < |t | < 1, with t∗ = 1 − 1/γ ∗ to first order in 1/γ ∗. In the following we allow n to have
any value, with γ interpreted as εn

/
ε0
n, so that ε0

n plays the role of an effective mass in the
following analysis.
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In this case, the plasma dispersion function (37) becomes

J ε
n (t0) = Aε

nv0

∫ ∞

γ ∗
dγ

[
− 1

γ
+

1

γ − γ0

]
exp

(
−ε0

n

T
γ

)
, (50)

with v0 = 2t0
/(

1 + t2
0

)
, γ0 = (

1 + t2
0

)/(
1 − t2

0

)
not necessarily ultrarelativistic. The integral

in (50) can be written in terms of the Dnestrovskii function [27, 28]

Fq(z) = ez

∫ ∞

z

dyy−qe−y, (51)

with q = 1. This gives

J ε
n (t0) = Aε

nv0e−anγ
∗
[F1(an(γ

∗ − γ0)) − F1(anγ
∗)], (52)

with an = ε0
n/T . The dispersion function F1(an(γ

∗ − γ0)) reduces to the plasma dispersion
function found by [26] for n = 0, who noted that the expansion

F1(z) = −ez

[
γ + ln z +

∞∑
n=1

(−z)n

nn!

]
, (53)

with γ = 0.5772 . . . Euler’s constant, is analytic except at z = 0.
Further comparison with the work of [26] is complicated by different assumptions made

in deriving the resonance conditions, here in the form pz = pz±. Our derivation of pz±, and
hence of t± in the dispersion function (52), is based on the quadratic equation obtained from
the product of all four resonant denominators, leading to (8), with the solutions following from
(9)–(11) and (34). The derivations of [26] involve starting from the product of only two of
the resonant denominators, with the ultrarelativistic approximation used to find the solutions.
The two approaches are equivalent for the leading term in the ultrarelativistic approximation
only for both γ � 1 and γ0 � 1, with γ0 determined by one of t0 = t±, 1/t± in (52). In this
sense, (52) reproduces the plasma dispersion function of [26] when the resonance is in the
ultrarelativistic range and provides a generalization to include contributions from resonances
that are not in the ultrarelativistic range.

6.4. Nonrelativistic quantum limit

In the nonrelativistic limit, the thermal distribution function is a Maxwellian, which is given
by setting t = pz/2ε0

n � 1 in (45). The plasma dispersion function (37) then reduces to

J ε
n (t0) = π1/2Aε

ne−ε0
n/T Z(yn), yn =

(
2ε0

n

T

)1/2

t0, (54)

where Z(y) is the familiar Fried and Conte function [29], defined by

Z(y) = π−1/2
∫ ∞

−∞
dx

e−x2

x − y
. (55)

The dielectric tensor for a nonrelativistic, magnetized quantum plasma is known [30]:
it involves a sum over Landau levels, n, and an integral over pz, with the electron
distribution described by an arbitrary occupation number, nn(pz). It was shown [30] that
this result reproduces earlier known results for the completely degenerate (nonrelativistic)
limit. Although it is straightforward to evaluate the integral (over pz) for a 1D Maxwellian
distribution in terms of the function (55), we are unaware of the result being written down
explicitly.

Comparison of our relativistic quantum result with this nonrelativistic quantum result
is relatively straightforward, except that the forms of the quantum recoil term are not the

12
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same. This is due to a subtle inconsistency. The expression obtained for the quantum
recoil is different depending on when the nonrelativistic approximation is made: the
nonrelativistic limit of the relativistically correct derivation of the recoil is different from
that obtained by a strictly nonrelativistic derivation of the recoil. The nonrelativistic
limit of the relativistically correct derivation of the recoil involves a factor (in ordinary
units) ω2/c2 − k2

z , whereas a strictly nonrelativistic derivation gives −k2
z . As a result, the

nonrelativistic limit of expressions (9) with (11) does not reproduce the nonrelativistic result
obtained by identifying pz = pz± by setting ω ∓ (εn − ε′

n′) = 0 in the nonrelativistic limit,
εn = m + p2

z/2m + n�0, ε
′
n′ = m + (pz − kz)

2/2m + n′�0, with �0 = eB/m. In the strictly
nonrelativistic approximation, the values of t± are to be interpreted as pz±/2m, with pz±
determined in this way. As a consequence, the nonrelativistic limit of our result does not
reproduce the recoil term in the resonant denominator in the known nonrelativistic quantum
results [30].

7. Discussion

Our main purpose in this paper is to derive a general expression for the response 4-tensor for a
spin-independent, relativistic quantum magnetized electron gas. The quantum effects included
are quantization of the electron motion perpendicular to the field lines to give the Landau levels,
n = 0, 1, . . . , the quantum recoil, degeneracy and dispersion due to one-photon pair creation.
The first three of these have nonrelativistic counterparts; dispersion due to pair creation is an
intrinsically relativistic quantum effect. A direct method of derivation of this response tensor
is to start from a known expression for the response tensor (1), that involves spin-dependent
vertex functions, and perform the sums over spin states explicitly. An alternative derivation is
analogous to the derivation of the spin-independent form in the unmagnetized case, where the
sum over spins is replaced by traces over Dirac matrices. We develop such a method, which
we refer to as the Ritus method (it has also been referred to as the Parle method [31]), and use
it to complement the direct method.

Another technique that facilities simplifying the general form is to solve the relativistic
quantum resonance condition in (1) for the resonant values, εpz = pz± [13], and to construct
the associated particle 4-momentum, p

μ
±. Rationalization of the resonant denominator then

allows one to sum over the electron and positron contributions to the virtual intermediate state.
The resulting alternative general form (17) for the response tensor separates naturally into
nongyrotropic and gyrotropic parts, which are even and odd, respectively, under interchange of
electrons and positrons. Another simplification is that the dispersion integrals, which involves
a numerator that is a tensor that depends on pμ and a resonant denominator, can be rewritten
such that the numerator is evaluated at p

μ
± and can be taken outside the pz-integral. This way

of evaluating dispersion integrals is suggested by a general property of dispersion integrals,
due to Cutkovsky [22], which implies that a dispersion integral whose integrand is of the form
N/D can be expressed in terms of the values of the numerator, N, evaluated at the resonant
values implied by the vanishing of the denominator, D = 0. The resulting form (26) involves
a nondispersive part (31) and a dispersive part that depends on the plasma dispersion function
evaluated at four arguments, t0 → t±, 1/t±, with pz±

/
ε0
n = 2t±/(1 − t2

±). For an arbitrary
electron distribution, the plasma dispersion function is defined for the sum and difference,
nn(t) → n̄n(t), n

d
n(t), of the occupation numbers for the electrons and positrons at each

Landau level. We write down the plasma dispersion function for an arbitrary thermal (Fermi–
Dirac) distribution, and evaluate it explicitly in the completely degenerate and nondegenerate
limits.
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The reduction of the relativistic quantum form to the known (covariant) nonquantum
limit [32] is relatively straightforward when one starts from the form (1) with (2). One
has (in SI units) h̄ → 0, n → ∞, with h̄n → p2

⊥/2eB; the sum over n is replaced by an
integral over p2

⊥/2eB; the function J n
ν (x) with x = h̄k2

⊥/2eB reduces to the Bessel function
Jν(k⊥p⊥/eB) to lowest order in an expansion in h̄ (and in 1/n); with this approximation to the
J -functions, the vertex functions in (2) reduce to their nonquantum counterparts; in addition,
one neglects the vacuum contribution and retains only the contribution from electrons. The
dispersion functions arise from pz-integral over the resonant denominators. Two resonant
denominators are approximated by ω ∓ (εn − ε′

n′) → ω ∓ [(n − n′)eB + kzpz]/ε; these led to
dispersion integrals associated with gyromagnetic absorption in the limit where the quantum
recoil is neglected. The two denominators associated with pair creation, ω ∓ (εn + ε′

n′), are

approximated by ∓2
(
m2 + p2

⊥ + p2
z

)1/2
; although there is no contribution from dispersion due

to pair creation in the nonquantum limit, one needs to retain these terms (ε = 1 = −ε′) in (1)
to reproduce the nondispersive part correctly.

A corollary of the result that only one plasma dispersion function is needed in the
relativistic quantum case, is that only one dispersion function is needed in the nonquantum
case. It is straightforward to show that this is the case in the nonrelativistic, nonquantum result.
The long-known expression for the response tensor in this limit [30] involves pz-integrals over
the occupation number, nn(pz), with resonant denominators ω ∓ [(n − n′)eB + kzpz]/m. For
an arbitrary nn(pz) this integral defines a (nonrelativistic-nonquantum) dispersion function;
for example, these can be evaluated in terms of the familiar plasma dispersion function (55)
for a Maxwellian distribution. The corollary implies that only one dispersion function is
required in the relativistic case, and this is not so obvious because of the square root in the
denominator associated with ε = (m2 +p2

⊥ +p2
z )

1/2. However, no rationalization is required if
one changes the variable of integration from pz to t, defined by pz = (m2 + p2

⊥)1/22t/(1 − t2)

in analogy with (34). In this case, the resonant denominators become quadratic functions of t,
and nonquantum counterparts of the roots t = t± can be identified. In this way, the dispersion
integrals can be written in terms of the plasma dispersion function (37) evaluated at the
relevant nonquantum counterparts of t±, which depend on p⊥. The nonquantum limit includes
an integral over p⊥, and because the plasma dispersion function now depends on this variable,
the nonquantum limit in this approach is considerably more cumbersome than the quantum
case, where the parameter n is discrete. For a one-dimensional distribution with p⊥ = 0 this
difficulty does not arise, and it is straightforward to show that the known nonquantum result
[32] is reproduced. Whether or not this alternative way of evaluating the dispersion integrals is
useful more generally in the nonquantum case warrants further investigation. In the context of
the nonquantum limit of our relativistic quantum result, we note that the relevant expressions
have yet to be derived by nonquantum methods.

The response 4-tensor for a completely degenerate electron gas reproduces the known
results for parallel propagation [14, 16, 18] and provides the generalization to arbitrary
angles of propagation. The generalization to oblique angles involves a major increase in
algebraic complexity, notably through the dependence on the J -functions, but introduces no
new dispersive features, which depend on ω, kz, but not on k⊥. In particular, the boundaries
(in the ω–kz-plane) for the different resonant contributions are unchanged from the case
of parallel propagation [18]. Our explicit expression for the response tensor for oblique
propagation for a completely degenerate distribution (section 5) also applies to an arbitrary
distribution, provided that one replaces the logarithmic plasma dispersion function by the
appropriate plasma dispersion function, determined by (37). We write down an explicit form,
(49), for this dispersion function for a relativistic thermal (1D Jüttner) distribution in terms
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of a known relativistic plasma dispersion function. We also compare this plasma dispersion
function with known expressions for the ultrarelativistic and nonrelativistic limits.

8. Conclusions

The main result presented in this paper is a general expression for the response tensor for a
magnetized, relativistic quantum electron gas summed over spin states and over virtual electron
and positron states. Although general forms for the response tensor have long been known,
these are cumbersome to use because of the explicit dependence on the choice of spin operator,
with the sum over virtual states leading to contributions involving all possible spin transitions
and from electron and positron states. We introduce several different techniques to perform
these sums explicitly. Most notable is the development of a method due to Ritus [21] which
allows the sums to be performed in a covariant manner without introducing a spin operator
explicitly. We show that the general result can be expressed in terms of resonant values
(pz±, ε±, t±) and a single relativistic plasma dispersion function. We make a comparison of
this general result with some known special cases. The comparison is straightforward only
for parallel propagation for a completely degenerate distribution. A new specific result in
this paper is the generalization of the response tensor to arbitrary angles of propagation for a
completely degenerate distribution. The plasma dispersion function, which is logarithmic in
this case, is independent of the angle of propagation. This explicit result generalizes further to
an arbitrary distribution simply by replacing the logarithmic function by the general form for
the plasma dispersion function. We write down the form of the plasma dispersion function for
a nondegenerate thermal (one-dimensional Jüttner) distribution and show how it reproduces a
known result in the ultrarelativistic limit [26]. We also comment on the known nonrelativistic
quantum form for the response 3-tensor [30].
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Appendix A. Vertex function

An explicit form for the vertex function that appears in (1) requires a specific choice of the
spin operator. For the choice of the magnetic momentum operator [15, 23], one has[
	ε′ε

q ′q(k)
]μ = (i eiψ)n−n′(

A
ε′ε(+)
q ′q J

(0)
q ′q (k),−A

ε′ε(−)
q ′q J

(+)
q ′q (k),−iA

ε′ε(−)
q ′q J

(−)
q ′q (k), Bε′ε

q ′qJ
(0)
q ′q (k)

)
,

A
ε′ε(±)
q ′q = a′

ε′s ′aεs ± a′
−ε′s ′a−εs, Bε′ε

q ′q = a′
ε′s ′a−εs + a′

−ε′s ′aεs,

J
(0)
q ′q (k) = b′

s ′bsJ
n−1
n′−n(x) + s ′sb′

−s ′b−sJ
n
n′−n(x),

J
(±)
q ′q (k) = s ′b′

−s ′bse
−iψJ n−1

n′−n+1(x) ± sb′
s ′b−se

iψJ n
n′−n−1(x),

a± = P±

(
εn ± ε0

n

2εn

)1/2

, bs =
(

ε0
n + sm

2ε0
n

)1/2

, (A.1)

with x = k2
⊥/2eB, and P± = 1

2 (1 +P)± 1
2 (1−P), P = pz/|pz|. The J -functions are defined

by (5) with Lν
n(x) the generalized Laguerre polynomial,

Lν
n(x) = exx−ν

n!

dn

dxn
(e−xxn+ν) =

n∑
m=0

(−)m
(

n + ν

n − m

)
xm

m!
. (A.2)
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Appendix B. Ritus method: evaluation of traces

In the Ritus method, the Dirac wavefunction is factorized in the form

�ε
q(x) = e−iε(εnt−pzz)Vε

g(x, n, pz)ϕ
ε
s (n, pz), (B.1)

where Vε
g (x, n, pz) is a diagonal matrix, with g being a gauge-dependent quantum number,

whose explicit form is not needed here. The reduced wavefunction may be written as

ϕε
s (n, pz) =

⎛
⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎠ . (B.2)

The column matrix in (B.2) may be interpreted as a reduced Dirac wavefunction, which
satisfies a reduced Dirac equation, which (in the standard representation) has the explicit form⎛

⎜⎜⎜⎜⎝
εεn − m 0 −εpz ipn

0 εεn − m −ipn εpz

−εpz ipn εεn + m 0

−ipn εpz 0 εεn + m

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎟⎟⎠ = 0. (B.3)

The factorization (B.1) allows the vertex function to be written as[
	ε′ε

q ′q(k)
]μ = V ϕ̄ε′

s ′ (n
′, p′

z)J
μ

n′n(k⊥)ϕε
s (n, pz), (B.4)

which defines the vertex matrix J μ

n′n(k⊥). It is useful to project onto the ‖ and ⊥-subspaces,
by writing γ

μ

‖ = g
μν

‖ γν, γ
μ

⊥ = g
μν

⊥ γν , so that these correspond to γ
μ

‖ = (γ 0, 0, 0, γ 3), γ
μ

⊥ =
(0, γ 1, γ 2, 0). One has

J μ

n′n(k⊥) = γ
μ

‖ J ‖
n′n(k⊥) + γ

μ

⊥J ⊥
n′n(k⊥), (B.5)

where J ‖
n′n(k⊥),J ⊥

n′n(k⊥) are diagonal 4 × 4 matrices:

J ‖
n′n(k⊥) = (−i e−iψ)n

′−n

⎛
⎜⎜⎜⎝

J n−1
n′−n 0 0 0
0 J n

n′−n 0 0

0 0 J n−1
n′−n 0

0 0 0 J n
n′−n

⎞
⎟⎟⎟⎠ , (B.6)

J ⊥
n′n(k⊥) = (−i e−iψ)n

′−n

×

⎛
⎜⎜⎜⎜⎝

−i e−iψJ n−1
n′−n+1 0 0 0

0 i eiψJ n
n′−n−1 0 0

0 0 −i e−iψJ n−1
n′−n+1 0

0 0 0 i eiψJ n
n′−n−1

⎞
⎟⎟⎟⎟⎠ , (B.7)

where the argument of the J -functions is k2
⊥/2eB and k⊥ = k⊥(cos ψ, sin ψ, 0).

The matrices γ
μ

‖ ,J ‖
n′n(k⊥) commute, but the matrices γ

μ

⊥ ,J ⊥
n′n(k⊥) do not. If one writes

the matrix products in (B.5) in the opposite order, one needs to replace J ⊥
n′n(k⊥) by

J̃ ⊥
n′n(k⊥) = (−i e−iψ)n

′−n

×

⎛
⎜⎜⎝

i eiψJ n
n′−n−1 0 0 0
0 −i e−iψJ n−1

n′−n+1 0 0
0 0 i eiψJ n

n′−n−1 0
0 0 0 −i e−iψJ n−1

n′−n+1

⎞
⎟⎟⎠ . (B.8)
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The matrix (B.8) also appears in the symmetry relations

J ‖
nn′(−k⊥) = [J ‖

n′n(k⊥)]∗, J ⊥
nn′(−k⊥) = [J̃ ⊥

n′n(k⊥)]∗. (B.9)

Using relations (B.9) in (B.5), one finds

J μ

nn′(−k⊥) = γ
μ

‖ [J ‖
n′n(k⊥)]∗ + γ

μ

⊥ [J̃ ⊥
n′n(k⊥)]∗. (B.10)

An alternative way of writing J μ

n′n(k⊥) is in terms of the projection matrices P± = 1
2 [1 ±�z],

with �z diagonal (1,−1, 1,−1). One has

J μ

n′n(k⊥) = (−i e−iψ)n
′−n

{
γ

μ

‖
[
J n−1

n′−n(x)P+ + J n
n′−n(x)P−

]
+ γ

μ

⊥
[ − i e−iψJ n−1

n′−n+1(x)P+ + i eiψJ n
n′−n−1(x)P−

]}
. (B.11)

These matrices satisfy the identities

P±γ
μ

‖ = γ
μ

‖ P±, P±γ
μ

⊥ = γ
μ

⊥P∓. (B.12)

Using these relations, an alternative form of (B.11), with the matrix products written in the
opposite order, is

J μ

n′n(k⊥) = (−i e−iψ)n
′−n

{[
J n−1

n′−n(x)P+ + J n
n′−n(x)P−

]
γ

μ

‖
+

[ − i e−iψJ n−1
n′−n+1(x)P− + i eiψJ n

n′−n−1(x)P+
]
γ

μ

⊥
}
. (B.13)

The sum over spins is replaced, in the Ritus method, by a trace over a product of Dirac
matrices. The basic sum used is∑

s=±
ϕε

s (n, pz)ϕ̄
ε
s (n, pz) = /P ε

n + m

2εεnV
,

[
P ε

n

]μ = (εεn, 0, pn, εpz). (B.14)

The evaluation of traces is similar to the unmagnetized case, with the added complication
that projection matrices are included. Evaluation of the trace of a product of two γ -matrices
becomes

Tr[γ μγ νP±] = 2[gμν ± if μν], (B.15)

and the trace of a product of four γ -matrices becomes

Tr[γ μγ νγ ργ σP±] = 2[gμνgρσ − gμρgνσ + gμσgρν]

± 2i[gμνf ρσ + f μνgρσ − gμρf νσ − f μρgνσ + gμσf νρ + f μσgνρ]. (B.16)

The projection operator in (B.15) or (B.16) may be moved to any other location using the
commutation relations P±M‖ = M‖P±, with M‖ = γ 0 or γ 3, or P±M⊥ = M⊥P∓, with
M⊥ = γ 1 or γ 2.
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